Filtern nach
Letzte Suchanfragen

Ergebnisse für *

Zeige Ergebnisse 1 bis 2 von 2.

  1. At the intersection of sciences, humanities and technologies – A review of the edition humboldt digital
    Autor*in: Benauer, Maria

    Abstract: The edition humboldt digital is a publication of the project ‘Travelling Humboldt’ by the Berlin-Brandenburg Academy of Sciences and Humanities. Together with its printed supplement the edition humboldt printed, it aims to make the... mehr

     

    Abstract: The edition humboldt digital is a publication of the project ‘Travelling Humboldt’ by the Berlin-Brandenburg Academy of Sciences and Humanities. Together with its printed supplement the edition humboldt printed, it aims to make the scientific heritage that is relevant to Alexander von Humboldt’s journeys accessible in its entirety based on a digital first approach. Overall, the edition humboldt digital excels in exploiting digital techniques and successfully positions itself at the intersection of sciences and humanities. Therefore, it will be discussed in this review whether it could be considered not only as a scholarly digital edition but also as an information platform on Alexander von Humboldt and his work in general. Additionally, by pursuing an open science strategy, the edition also paves the way for future reuse of its data. Altogether, even though some technical issues remain, the edition humboldt digital can serve as a role model for other digital scholarly editions. ...

     

    Export in Literaturverwaltung   RIS-Format
      BibTeX-Format
    Quelle: Verbundkataloge
    Sprache: Englisch
    Medientyp: Aufsatz aus einer Zeitschrift
    Format: Online
    Weitere Identifier:
    Übergeordneter Titel:
    Enthalten in: RIDE; Köln : Institut für Dokumentologie und Editorik, [2014]-; 13 (12.2020); Online-Ressource
    Weitere Schlagworte: Alexander von Humboldt; historical critical edition; digital first; hybrid edition; history of science; travel journals; letters; CMIF; linked open data
    Umfang: Online-Ressource
  2. Data Science and Knowledge Discovery
    Beteiligt: Portela, Filipe (Herausgeber)
    Erschienen: 2022
    Verlag:  MDPI - Multidisciplinary Digital Publishing Institute, Basel ; OAPEN FOUNDATION, The Hague

    Data Science (DS) is gaining significant importance in the decision process due to a mix of various areas, including Computer Science, Machine Learning, Math and Statistics, domain/business knowledge, software development, and traditional research.... mehr

    Zugang:
    Verlag (kostenfrei)
    Bibliothek der Hochschule Darmstadt, Zentralbibliothek
    keine Fernleihe
    TU Darmstadt, Universitäts- und Landesbibliothek - Stadtmitte
    keine Fernleihe
    Bibliothek der Frankfurt University of Applied Sciences
    keine Fernleihe
    Universitätsbibliothek J. C. Senckenberg, Zentralbibliothek (ZB)
    keine Fernleihe
    Hochschul- und Landesbibliothek Fulda, Standort Heinrich-von-Bibra-Platz
    keine Fernleihe
    Technische Hochschule Mittelhessen, Hochschulbibliothek Gießen
    keine Fernleihe
    Universitätsbibliothek Gießen
    keine Fernleihe
    Universitätsbibliothek Kassel, Landesbibliothek und Murhardsche Bibliothek der Stadt Kassel
    keine Fernleihe
    Universität Mainz, Zentralbibliothek
    keine Fernleihe
    Universität Marburg, Universitätsbibliothek
    keine Fernleihe

     

    Data Science (DS) is gaining significant importance in the decision process due to a mix of various areas, including Computer Science, Machine Learning, Math and Statistics, domain/business knowledge, software development, and traditional research. In the business field, DS's application allows using scientific methods, processes, algorithms, and systems to extract knowledge and insights from structured and unstructured data to support the decision process. After collecting the data, it is crucial to discover the knowledge. In this step, Knowledge Discovery (KD) tasks are used to create knowledge from structured and unstructured sources (e.g., text, data, and images). The output needs to be in a readable and interpretable format. It must represent knowledge in a manner that facilitates inferencing. KD is applied in several areas, such as education, health, accounting, energy, and public administration. This book includes fourteen excellent articles which discuss this trending topic and present innovative solutions to show the importance of Data Science and Knowledge Discovery to researchers, managers, industry, society, and other communities. The chapters address several topics like Data mining, Deep Learning, Data Visualization and Analytics, Semantic data, Geospatial and Spatio-Temporal Data, Data Augmentation and Text Mining.

     

    Export in Literaturverwaltung   RIS-Format
      BibTeX-Format
    Quelle: Verbundkataloge
    Beteiligt: Portela, Filipe (Herausgeber)
    Sprache: Englisch
    Medientyp: Ebook
    Format: Online
    ISBN: 9783036543154; 9783036543161
    Schlagworte: Information technology industries; Computer science
    Weitere Schlagworte: crisis reporting; chatbots; journalists; news media; COVID-19; textbook research; digital humanities; digital infrastructures; data analysis; content base image retrieval; semantic information retrieval; deep features; multimedia document retrieval; data science; open government data; governance and social institutions; economic determinants of open data; geoinformation technology; fractal dimension; territorial road network; box-counting framework; script Python; ArcGIS; internet of things; LoRaWAN; ICT; The Things Network; ESP32 microcontroller; decision systems; rule based systems; databases; rough sets; prediction by partial matching; spatio-temporal; activity recognition; smart homes; artificial intelligence; automation; e-commerce; machine learning; big data; customer relationship management (CRM); distracted driving; driving behavior; driving operation area; data augmentation; feature extraction; authorship; text mining; attribution; neural networks; deep learning; forensic intelligence; dashboard; WebGIS; data analytics; SARS-CoV-2; Big Data; Web Intelligence; media analytics; social sciences; humanities; linked open data; adaptation process; interdisciplinary research; media criticism; classification; information systems; public health; data mining; ioCOVID19; n/a
    Umfang: 1 Online-Ressource (254 p.)