Verlag:
Heinrich-Heine-Universität Düsseldorf, Wirtschaftswissenschaftliche Fakultät, Düsseldorf Institute for Competition Economics (DICE), Düsseldorf, Deutschland
Der vorliegende Beitrag beleuchtet mögliche Wohlfahrtswirkungen eines Einsatzes von Algorithmen. Oftmals können diese Produkte verbessern und die Effizienz von Prozessen erhöhen können in einigen Bereichen wie der Medizin, der Landwirtschaft, der...
mehr
ZBW - Leibniz-Informationszentrum Wirtschaft, Standort Kiel
Signatur:
DS 255
Fernleihe:
keine Fernleihe
Der vorliegende Beitrag beleuchtet mögliche Wohlfahrtswirkungen eines Einsatzes von Algorithmen. Oftmals können diese Produkte verbessern und die Effizienz von Prozessen erhöhen können in einigen Bereichen wie der Medizin, der Landwirtschaft, der Logistik, etc. erhebliche gesellschaftliche Vorteile schaffen. Jedoch kann auch eine Gefahr in der gezielten Ansprache "naiver" Nutzer bestehen, um ihnen Güter zu verkaufen, die sie eigentlich gar nicht brauchen, auch wenn personalisierte Angebote, basierend auf Algorithmen, für viele Nutzer sicher besser sind als Spam. In Bezug auf Algorithmen zur Preissetzung scheinen personalisierten Preise noch immer weniger verbreitet zu sein als manchmal vermutet wird. Eine individuelle Preisdifferenzierung hätte aber auch nicht per se negative Auswirkungen auf alle Konsumenten und die Wohlfahrt. Dynamische Preissetzung, also intertemporale Preisdifferenzierung, ist hingegen vergleichsweise weiter verbreitet. Die Wohlfahrtseffekte dieser Form der Preisdifferenzierung können jedoch durchaus positiv sein, sodass sich aus wohlfahrtsökonomischer Sicht kein pauschaler Handlungsbedarf zeigt. Die Kartellbildung durch Algorithmen kann eine relevante Gefahr darstellen, auch wenn die bisherige empirische Evidenz hier noch dünn ist. Ob hier ein gesetzgeberischer Handlungsbedarf besteht, ist jedoch keineswegs klar. Handlungsbedarf kann hier jedoch für Unternehmen in den Bereichen der unternehmerischen Compliance und Corporate Governance liegen. Der Zugang dritter zu wettbewerbsrelevanten Daten, etwa zur Entwicklung von Algorithmen, wird in Deutschland durch die 10. GWB-Novelle deutlich vereinfacht. Neben §19 Abs. 2 Nr. 4 und §19a GWB wird hier besonders der neue §20 Abs. 1a GWB von praktischer Bedeutung sein. Auch der Vorschlag der Europäischen Kommission für einen Digital Markets Act enthält dazu Regeln, die sich jedoch - anders als §20 Abs. 1a GWB - nur auf Gatekeeper beziehen und daher tendenziell weniger weitreichend sein werden. Schließlich ist die Gefahr von Filterblasen ist nicht von der Hand zu weisen - allerdings sind diese Probleme oftmals nicht marktmachtbezogen und daher nicht gut durch Kartellrecht zu adressieren.