Narrow Search
Last searches

Results for *

Displaying results 1 to 2 of 2.

  1. Feynman motives
    Published: c2010
    Publisher:  World Scientific Pub. Co., Singapore

    Ostbayerische Technische Hochschule Amberg-Weiden / Hochschulbibliothek Amberg
    Unlimited inter-library loan, copies and loan
    Ostbayerische Technische Hochschule Amberg-Weiden, Hochschulbibliothek, Standort Weiden
    Unlimited inter-library loan, copies and loan
    Export to reference management software   RIS file
      BibTeX file
    Content information
    Source: Union catalogues
    Language: English
    Media type: Ebook
    Format: Online
    ISBN: 9789814271202; 9789814271219; 9814271209; 9814271217
    RVK Categories: SK 950
    Subjects: MATHEMATICS / Geometry / Algebraic; Algebraische Varietät; Motiv (Mathematik); Pfadintegral; Quantenfeldtheorie; Feynman integrals; Motives (Mathematics); Quantum field theory; Motives (Mathematics); Feynman integrals; Quantum field theory; Quantenfeldtheorie; Algebraische Varietät; Motiv <Mathematik>; Pfadintegral
    Scope: 1 Online-Ressource (xiii, 220 p.)
    Notes:

    Includes bibliographical references (p. 207-213) and index

    1. Perturbative quantum field theory and Feynman diagrams. 1.1. A calculus exercise in Feynman integrals. 1.2. From Lagrangian to effective action. 1.3. Feynman rules. 1.4. Simplifying graphs : vacuum bubbles, connected graphs. 1.5. One-particle-irreducible graphs. 1.6. The problem of renormalization. 1.7. Gamma functions, Schwinger and Feynman parameters. 1.8. Dimensional regularization and minimal subtraction -- 2. Motives and periods. 2.1. The idea of motives. 2.2. Pure motives. 2.3. Mixed motives and triangulated categories. 2.4. Motivic sheaves. 2.5. The Grothendieck ring of motives. 2.6. Tate motives. 2.7. The algebra of periods. 2.8. Mixed Tate motives and the logarithmic extensions. 2.9. Categories and Galois groups. 2.10. Motivic Galois groups --

    - 3. Feynman integrals and algebraic varieties. 3.1. The parametric Feynman integrals. 3.2. The graph hypersurfaces. 3.3. Landau varieties. 3.4. Integrals in affine and projective spaces. 3.5. Non-isolated singularities. 3.6. Cremona transformation and dual graphs. 3.7. Classes in the Grothendieck ring. 3.8. Motivic Feynman rules. 3.9. Characteristic classes and Feynman rules. 3.10. Deletion-contraction relation. 3.11. Feynman integrals and periods. 3.12. The mixed Tate mystery. 3.13. From graph hypersurfaces to determinant hypersurfaces. 3.14. Handling divergences. 3.15. Motivic zeta functions and motivic Feynman rules -- 4. Feynman integrals and Gelfand-Leray forms. 4.1. Oscillatory integrals. 4.2. Leray regularization of Feynman integrals --

    - 5. Connes-Kreimer theory in a nutshell. 5.1. The Bogolyubov recursion. 5.2. Hopf algebras and affine group schemes. 5.3. The Connes-Kreimer Hopf algebra. 5.4. Birkhoff factorization. 5.5. Factorization and Rota-Baxter algebras. 5.6. Motivic Feynman rules and Rota-Baxter structure -- 6. The Riemann-Hilbert correspondence. 6.1. From divergences to iterated integrals. 6.2. From iterated integrals to differential systems. 6.3. Flat equisingular connections and vector bundles. 6.4. The "cosmic Galois group" -- 7. The geometry of DimReg. 7.1. The motivic geometry of DimReg. 7.2. The noncommutative geometry of DimReg -- 8. Renormalization, singularities, and Hodge structures. 8.1. Projective radon transform. 8.2. The polar filtration and the Milnor fiber. 8.3. DimReg and mixed Hodge structures. 8.4. Regular and irregular singular connections --

    - 9. Beyond scalar theories. 9.1. Supermanifolds. 9.2. Parametric Feynman integrals and supermanifolds. 9.3. Graph supermanifolds. 9.4. Noncommutative field theories

    This book presents recent and ongoing research work aimed at understanding the mysterious relation between the computations of Feynman integrals in perturbative quantum field theory and the theory of motives of algebraic varieties and their periods. One of the main questions in the field is understanding when the residues of Feynman integrals in perturbative quantum field theory evaluate to periods of mixed Tate motives. The question originates from the occurrence of multiple zeta values in Feynman integrals calculations observed by Broadhurst and Kreimer. Two different approaches to the subject are described. The first, a "bottom-up" approach, constructs explicit algebraic varieties and periods from Feynman graphs and parametric Feynman integrals.

    This approach, which grew out of work of Bloch-Esnault-Kreimer and was more recently developed in joint work of Paolo Aluffi and the author, leads to algebro-geometric and motivic versions of the Feynman rules of quantum field theory and concentrates on explicit constructions of motives and classes in the Grothendieck ring of varieties associated to Feynman integrals. While the varieties obtained in this way can be arbitrarily complicated as motives, the part of the cohomology that is involved in the Feynman integral computation might still be of the special mixed Tate kind. A second, "top-down" approach to the problem, developed in the work of Alain Connes and the author, consists of comparing a Tannakian category constructed out of the data of renormalization of perturbative scalar field theories, obtained in the form of a Riemann-Hilbert correspondence, with Tannakian categories of mixed Tate motives.

    The book draws connections between these two approaches and gives an overview of other ongoing directions of research in the field, outlining the many connections of perturbative quantum field theory and renormalization to motives, singularity theory, Hodge structures, arithmetic geometry, supermanifolds, algebraic and non-commutative geometry. The text is aimed at researchers in mathematical physics, high energy physics, number theory and algebraic geometry. Partly based on lecture notes for a graduate course given by the author at Caltech in the fall of 2008, it can also be used by graduate students interested in working in this area

  2. Feynman motives
    Published: c2010
    Publisher:  World Scientific Pub. Co, Singapore

    This book presents recent and ongoing research work aimed at understanding the mysterious relation between the computations of Feynman integrals in perturbative quantum field theory and the theory of motives of algebraic varieties and their periods.... more

    Access:
    Aggregator (lizenzpflichtig)
    Hochschule Aalen, Bibliothek
    E-Book EBSCO
    No inter-library loan
    Hochschule Esslingen, Bibliothek
    E-Book Ebsco
    No inter-library loan
    Saarländische Universitäts- und Landesbibliothek
    No inter-library loan
    Universitätsbibliothek der Eberhard Karls Universität
    No inter-library loan

     

    This book presents recent and ongoing research work aimed at understanding the mysterious relation between the computations of Feynman integrals in perturbative quantum field theory and the theory of motives of algebraic varieties and their periods. One of the main questions in the field is understanding when the residues of Feynman integrals in perturbative quantum field theory evaluate to periods of mixed Tate motives. The question originates from the occurrence of multiple zeta values in Feynman integrals calculations observed by Broadhurst and Kreimer. Two different approaches to the subject are described. The first, a "bottom-up" approach, constructs explicit algebraic varieties and periods from Feynman graphs and parametric Feynman integrals. This approach, which grew out of work of Bloch-Esnault-Kreimer and was more recently developed in joint work of Paolo Aluffi and the author, leads to algebro-geometric and motivic versions of the Feynman rules of quantum field theory and concentrates on explicit constructions of motives and classes in the Grothendieck ring of varieties associated to Feynman integrals. While the varieties obtained in this way can be arbitrarily complicated as motives, the part of the cohomology that is involved in the Feynman integral computation might still be of the special mixed Tate kind. A second, "top-down" approach to the problem, developed in the work of Alain Connes and the author, consists of comparing a Tannakian category constructed out of the data of renormalization of perturbative scalar field theories, obtained in the form of a Riemann-Hilbert correspondence, with Tannakian categories of mixed Tate motives. The book draws connections between these two approaches and gives an overview of other ongoing directions of research in the field, outlining the many connections of perturbative quantum field theory and renormalization to motives, singularity theory, Hodge structures, arithmetic geometry, supermanifolds, algebraic and non-commutative geometry. The text is aimed at researchers in mathematical physics, high energy physics, number theory and algebraic geometry. Partly based on lecture notes for a graduate course given by the author at Caltech in the fall of 2008, it can also be used by graduate students interested in working in this area

     

    Export to reference management software   RIS file
      BibTeX file
    Content information
    Source: Union catalogues
    Language: English
    Media type: Ebook
    Format: Online
    ISBN: 9789814271219; 9814271217
    RVK Categories: SK 950
    Subjects: Motives (Mathematics); Feynman integrals; Quantum field theory; Quantum field theory; Motives (Mathematics); Feynman integrals; Electronic books; Quantum field theory; Algebraische Varietät; Motiv; Pfadintegral; Quantenfeldtheorie; Algebraische Varietät; Motiv (Mathematik); Pfadintegral; Quantenfeldtheorie; MATHEMATICS ; Geometry ; Algebraic; Motives (Mathematics); Feynman integrals
    Scope: Online Ressource (xiii, 220 p.), ill.
    Notes:

    Includes bibliographical references (p. 207-213) and index. - Description based on print version record

    1. Perturbative quantum field theory and Feynman diagrams. 1.1. A calculus exercise in Feynman integrals. 1.2. From Lagrangian to effective action. 1.3. Feynman rules. 1.4. Simplifying graphs : vacuum bubbles, connected graphs. 1.5. One-particle-irreducible graphs. 1.6. The problem of renormalization. 1.7. Gamma functions, Schwinger and Feynman parameters. 1.8. Dimensional regularization and minimal subtraction -- 2. Motives and periods. 2.1. The idea of motives. 2.2. Pure motives. 2.3. Mixed motives and triangulated categories. 2.4. Motivic sheaves. 2.5. The Grothendieck ring of motives. 2.6. Tate motives. 2.7. The algebra of periods. 2.8. Mixed Tate motives and the logarithmic extensions. 2.9. Categories and Galois groups. 2.10. Motivic Galois groups -- 3. Feynman integrals and algebraic varieties. 3.1. The parametric Feynman integrals. 3.2. The graph hypersurfaces. 3.3. Landau varieties. 3.4. Integrals in affine and projective spaces. 3.5. Non-isolated singularities. 3.6. Cremona transformation and dual graphs. 3.7. Classes in the Grothendieck ring. 3.8. Motivic Feynman rules. 3.9. Characteristic classes and Feynman rules. 3.10. Deletion-contraction relation. 3.11. Feynman integrals and periods. 3.12. The mixed Tate mystery. 3.13. From graph hypersurfaces to determinant hypersurfaces. 3.14. Handling divergences. 3.15. Motivic zeta functions and motivic Feynman rules -- 4. Feynman integrals and Gelfand-Leray forms. 4.1. Oscillatory integrals. 4.2. Leray regularization of Feynman integrals -- 5. Connes-Kreimer theory in a nutshell. 5.1. The Bogolyubov recursion. 5.2. Hopf algebras and affine group schemes. 5.3. The Connes-Kreimer Hopf algebra. 5.4. Birkhoff factorization. 5.5. Factorization and Rota-Baxter algebras. 5.6. Motivic Feynman rules and Rota-Baxter structure -- 6. The Riemann-Hilbert correspondence. 6.1. From divergences to iterated integrals. 6.2. From iterated integrals to differential systems. 6.3. Flat equisingular connections and vector bundles. 6.4.

    1. Perturbative quantum field theory and Feynman diagrams. 1.1. A calculus exercise in Feynman integrals. 1.2. From Lagrangian to effective action. 1.3. Feynman rules. 1.4. Simplifying graphs : vacuum bubbles, connected graphs. 1.5. One-particle-irreducible graphs. 1.6. The problem of renormalization. 1.7. Gamma functions, Schwinger and Feynman parameters. 1.8. Dimensional regularization and minimal subtraction2. Motives and periods. 2.1. The idea of motives. 2.2. Pure motives. 2.3. Mixed motives and triangulated categories. 2.4. Motivic sheaves. 2.5. The Grothendieck ring of motives. 2.6. Tate motives. 2.7. The algebra of periods. 2.8. Mixed Tate motives and the logarithmic extensions. 2.9. Categories and Galois groups. 2.10. Motivic Galois groups -- 3. Feynman integrals and algebraic varieties. 3.1. The parametric Feynman integrals. 3.2. The graph hypersurfaces. 3.3. Landau varieties. 3.4. Integrals in affine and projective spaces. 3.5. Non-isolated singularities. 3.6. Cremona transformation and dual graphs. 3.7. Classes in the Grothendieck ring. 3.8. Motivic Feynman rules. 3.9. Characteristic classes and Feynman rules. 3.10. Deletion-contraction relation. 3.11. Feynman integrals and periods. 3.12. The mixed Tate mystery. 3.13. From graph hypersurfaces to determinant hypersurfaces. 3.14. Handling divergences. 3.15. Motivic zeta functions and motivic Feynman rules -- 4. Feynman integrals and Gelfand-Leray forms. 4.1. Oscillatory integrals. 4.2. Leray regularization of Feynman integrals -- 5. Connes-Kreimer theory in a nutshell. 5.1. The Bogolyubov recursion. 5.2. Hopf algebras and affine group schemes. 5.3. The Connes-Kreimer Hopf algebra. 5.4. Birkhoff factorization. 5.5. Factorization and Rota-Baxter algebras. 5.6. Motivic Feynman rules and Rota-Baxter structure -- 6. The Riemann-Hilbert correspondence. 6.1. From divergences to iterated integrals. 6.2. From iterated integrals to differential systems. 6.3. Flat equisingular connections and vector bundles. 6.4. The "cosmic Galois group" -- 7. The geometry of DimReg. 7.1. The motivic geometry of DimReg. 7.2. The noncommutative geometry of DimReg -- 8. Renormalization, singularities, and Hodge structures. 8.1. Projective radon transform. 8.2. The polar filtration and the Milnor fiber. 8.3. DimReg and mixed Hodge structures. 8.4. Regular and irregular singular connections -- 9. Beyond scalar theories. 9.1. Supermanifolds. 9.2. Parametric Feynman integrals and supermanifolds. 9.3. Graph supermanifolds. 9.4. Noncommutative field theories.