Narrow Search
Last searches

Results for *

Displaying results 1 to 2 of 2.

  1. Small- and large-scale conformational changes of adenylate kinase: A molecular dynamics study of the subdomain motion and mechanics
    Published: 2008

    Adenylate kinase, an enzyme that catalyzes the phosphoryl transfer between ATP and AMP, can interconvert between the open and catalytically potent (closed) forms even without binding ligands. Several aspects of the enzyme elasticity and internal... more

     

    Adenylate kinase, an enzyme that catalyzes the phosphoryl transfer between ATP and AMP, can interconvert between the open and catalytically potent (closed) forms even without binding ligands. Several aspects of the enzyme elasticity and internal dynamics are analyzed here by atomistic molecular dynamics simulations covering a total time span of 100 ns. This duration is sufficiently long to reveal a partial conversion of the enzyme that proceeds through jumps between structurally different substates. The intra- and intersubstates contributions to the enzyme's structural fluctuations are analyzed and compared both in magnitude and directionality. It is found that, despite the structural heterogeneity of the visited conformers, the generalized directions accounting for conformational fluctuations within and across the substates are mutually consistent and can be described by a limited set of collective modes. The functional-oriented nature of the consensus modes is suggested by their good overlap with the deformation vector bridging the open and closed crystal structures. The consistency of adenylate kinase's internal dynamics over timescales wide enough to capture intra- and intersubstates fluctuations adds elements in favor of the recent proposal that the free (apo) enzyme possesses an innate ability to sustain the open/close conformational changes. © 2008 by the Biophysical Society.

     

    Export to reference management software   RIS file
      BibTeX file
    Source: BASE Selection for Comparative Literature
    Language: English
    Media type: Article (journal)
    Format: Online
    Subjects: Adenylate Kinase; Biomechanical Phenomena; Escherichia coli; Protein Structure; Tertiary; Movement
  2. Using dynamics-based comparisons to predict nucleic acid binding sites in proteins: An application to OB-fold domains

    Motivation: We have previously demonstrated that proteins may be aligned not only by sequence or structural homology, but also using their dynamical properties. Dynamics-based alignments are sensitive and powerful tools to compare even structurally... more

     

    Motivation: We have previously demonstrated that proteins may be aligned not only by sequence or structural homology, but also using their dynamical properties. Dynamics-based alignments are sensitive and powerful tools to compare even structurally dissimilar protein families. Here, we propose to use this method to predict protein regions involved in the binding of nucleic acids. We have used the OB-fold, a motif known to promote protein-nucleic acid interactions, to validate our approach. Results: We have tested the method using this well-characterized nucleic acid binding family. Protein regions consensually involved in statistically significant dynamics-based alignments were found to correlate with nucleic acid binding regions. The validated scheme was next used as a tool to predict which regions of the AXH-domain representatives (a sub-family of the OB-fold for which no DNA/RNA complex is yet available) are putatively involved in binding nucleic acids. The method, therefore, is a promising general approach for predicting functional regions in protein families on the basis of comparative large-scale dynamics. © The Author 2009. Published by Oxford University Press. All rights reserved.

     

    Export to reference management software   RIS file
      BibTeX file
    Source: BASE Selection for Comparative Literature
    Language: English
    Media type: Article (journal)
    Format: Online
    Subjects: Amino Acid Motif; Binding Site; DNA; DNA-Binding Protein; Nucleic Acid Conformation; Protein Folding; RNA; RNA-Binding Protein; Sequence Alignment; Sequence Analysis; Protein; Software